Главная Основа метрологии Виды распределения результатов наблюдения и случайных погрешностей


Виды распределения результатов наблюдения и случайных погрешностей

Метрология - Основа метрологии

Случайная погрешность измерения образуется под влиянием большого числа факторов, сопутствующих процессу измерения. В каждой конкретной ситуации работает свой механизм образования погрешности. Поэтому естественно предположить, что каждой ситуации должен соответствовать свой тип распределения погрешности. Однако во многих случаях имеются возможности еще до проведения измерений сделать некоторые предположения о форме функции распределения, так что после проведения измерений остается только определить значения некоторых параметров, входящих в выражение для предполагаемой функции распределения.

Случайная погрешность характеризует неопределенность наших знаний об истинном значении измеряемой величины, полученных в результате проведенных наблюдений. Согласно К. Шеннону мерой неопределенности ситуации, описываемой случайной величиной X, является энтропия [4]


являющаяся функционалом дифференциальной функции распределения . Можно предположить, что любой процесс измерения формируется таким образом, что неопределенность результата наблюдений оказывается наибольшей в некоторых пределах, определяемых допускаемыми значениями погрешности. Поэтому наиболее вероятными должны быть такие распределения , при которых энтропия обращается в максимум.

Для выявления вида наиболее вероятных распределений рассмотрим несколько наиболее типичных случаев [3].

1. В классе распределений результатов наблюдений , обладающих определенной зоной рассеивания между значениями х = b и х = а шириной b-а=, найдем такое, которое обращает в максимум энтропию при наличии ограничивающих условий:
, , ,
где - математическое ожидание результатов наблюдений. Решение поставленной задачи находится методом множителей Лагранжа.

Искомая плотность распределения результатов наблюдений описывается выражением

(23)


Такое распределение результатов наблюдений называется равномерным.

Значения дифференциальной функции распределения равномерной распределенной случайной погрешности постоянны в интервале [- а; + а], а вне этого интервала равны нулю (рис.6).


Поэтому выражение для дифференциальной функции распределения случайной погрешности можно записать в виде

Определим числовые характеристики равномерного распределения. Математическое ожидание случайной погрешности находим по формуле (10):

Дисперсию случайной равномерно распределенной погрешности можно найти по формуле (18):

В силу симметрии распределения относительно математического ожидания коэффициент асимметрии должен равняться нулю:

Для определения эксцесса найдем вначале четвертый момент случайной погрешности:


поэтому

В заключение найдем веро-ятность попадания случайной погрешности в заданный интервал [], равный заштрихованной площади на рис.7.

2. В классе распределений результатов наблюдений , обладающих определенной дисперсией , найдем такое, которое обращает в максимум энтропию при наличии ограничений:

, , , .

Решение этой задачи также находится методом множителей Лагранжа. Искомая плотность распределения результатов наблюдений описывается выражением

(25)


где - математическое ожидание и - среднеквадратическое отклонение результатов наблюдений.

Учитывая, что при полном исключении систематических погрешностей и , для дифференциальной функции распределения случайной погрешности можно записать уравнение

(25)

Распределение, описываемое уравнениями (25) и (26), называется нормальным или распределением Гаусса.

На рис.8 изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения .

Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.

Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал :

Заменим переменные:


после чего получим следующее выражение для искомой вероятности:

Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией

(27)


В приложении (табл.П.5 и П.6) приведены значения дифференциальной функции нормированного нормального распределения, а также интегральной функции этого распределения, определяемой как

(28)


С помощью функции Ф(z) вероятность находят как

(29)


При использовании данной формулы следует иметь в виду тождество


вытекающее непосредственно из определения функции Ф(z).

Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики - Муавр, Лаплас, Гаусс, Чебышев и Ляпунов. Центральная предельная теорема утверждает, что распределение случайных погрешностей будет близко в нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

3. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности в течение всего времени измерений. В этом случае, рассуждая таким же образом, как и прежде, легко найти, что энтропия обращается в максимум, если результаты наблюдений имеют распределение Лапласа с плотностью

(30)

где - математическое ожидание, - среднеквадратическое отклонение результатов наблюдения. Распределением Лапласа следует пользоваться в тех случаях, когда точностные характеристики заранее неизвестны или нестабильны во времени.

Дифференциальная функция распределения случайных погрешностей получается подстановкой и в выражение (30):

Асимметрия распределения равна нулю, поскольку распределение симметрично относительно нуля, а эксцесс в соответствии с формулой (22) составляет

Таким образом, по сравнению с нормальным распределением (Ех = 0) равномерное распределение является более плосковершинным (Ех = - 1.2), а распределение Лапласа - более островершинным (Ех = 3).

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Учёные первооткрыватели:

Ван Аллен, Джеймс

News image

Джеймс Альфред Ван Аллен (англ. James Alfred Van Allen, 7 сентября 1914 — 9 августа 2006) — американский астрофизик, известный св...

Ляпунов, Александр Михайлович

News image

Алекса ндр Миха йлович Ляпуно в (25 мая (6 июня) 1857, Ярославль — 3 ноября 1918, Одесса) — математик и ме...

Авторизация



Единицы измерений:

Гигабайт

News image

Гигабайт  (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартных (8-битным) байтов или 1000 мегабайтам. Неправильность названия Читая нижеизложенный те...

Единицы измерения количества информации

News image

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как од...

Ом

News image

Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает на...

Атмосфера (единица измерения)

News image

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана. Существуют две примерно равные др...

Открыватели:

Оорт, Ян Хендрик

News image

Ян Хéндрик Óорт (нидерл. Jan Hendrik Oort; 28 апреля 1900, Франекер — 5 ноября 1992, Лейден) — нидерландский астроном, член Нидерландской АН. Окончил Гронингенский университет, гд...

Универсальный конвертер
Conversion Type:
Quantity:

converts to:

Construction Unit converter provided by: EcoLog Homes

Интересные факты:

Таблица Менделеева

News image

В конце августа 1875 г. в кабинет акад. Вюрца входит его ученик, молодой французский химик Лекок-де-Буабодран. н долго не решается об...

О звуке

News image

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его не...

Эйнштейн и квантовая теория света

News image

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных ча...

Как происходит кристаллизация жидкости

News image

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ...

Атом и время

News image

Трудно себе представить более простое и вместе с тем более сложное понятие, чем время. Старая пословица говорит: «нет ничего в ми...

Ньютон и Марат о притяжении лучей света

News image

Что такое свет?— На этот вопрос Ньютон, очень много поработавший над изуче­нием световых явлений, отвечал так: свет — это поток бы...